st52-3n material
1.0570 h9
1.0570 Material,St52-3 Steel Equivalent,st52-3,st52.3,st52.3n,st 52-3 n,st52-3n,st52-3 material,st52-3 equivalent,st52-3 equivalent grade,st 52-3 neue bezeichnung,st52-3k,st52-3 chemical composition,steel st52-3,st52.3 steel,st52-3 material equivalent,st52-3 steel,st52-3 datenblatt,st52-3 equivalent in indian standard,st52-3 steel equivalent,steel st52-3 equivalent,st52-3 material properties,st52-3 grade specification,1.0570 st 52-3,st52-3 odpowiednik,din st52-3,din st52.3,st52-3 werkstoffnummer,st52-3n material properties,st52-3n material,st52-3 u,st52-3 steel plate,st52.3 tube,werkstoff st52-3,st52-3 material specification,st52-3 tube,st52-3 eigenschappen,st52-3 equivalent sae,st52-3 plate,st52-3 steel equivalent astm,st52-3 steel chemical composition,st52-3 hardness,st52-3 jis
gangsteel produced and exported DIN 1.0570 and ST 52-3 steel plate as common carbon structural steel. Gangsteel supply DIN17100 ST52-3 ST52-3N Steel plate low alloy and high strength steel plate. DIN 17100 ST52-3 steel plate price and stock supplier.ST 52-3 steel plate is one mainly of Carbon structural steel, ST 52-3 is a type of steel sheet under DIN standard which is used to build ship, bridge, belongs to high strength sheet.
If you have any requirement for ST 52-3 structure steel plate,under DIN17100 standard ST 52-3 steel plate, under DIN17100 standard, please contact us.
1.Steel Grade : ST 52-3 (1.0570)
2. Standard: DIN 17100 steels for general structural purposes
3. Approval By Third Party :ABS, DNV, GL, CCS, LR , RINA, KR, TUV, CE
4. Classification: General structural purposes
5. Product form : super heavy steel plate
Despite the high levels of molybdenum and tungsten carbides (about 6% tungsten, 5% molybdenum) in each grade, the small distinction in vanadium content material provides M4 almost twice the damage lifetime of M2 in many environments. In cold work device steels, the carbide content material normally, and to a limited extent the vanadium content material in particular, might generally be used as a rough predictor of potential wear life. In addition, the uniformity of the CPM microstructure offers improved toughness in CPM versions of conventional tool steels. The CPM versions of the same grades are more proof against brittle failures.
- In this case, nearly all the choices for upgrading will contain steel of higher alloy content material.
- Thus, upgrading for put on resistance might all the time supply advantages, offered different properties aren’t compromised.
- Several of the excessive-alloy CPM steels offer put on properties halfway between standard tool steels, and carbide.
- When lengthy-time period abrasive wear resistance is desired in a device (that is, when the essential software runs well, however an extended in-service time is desired), a metal with higher put on properties is suitable.
- However, in situations generating extreme metal-to-metal put on , the most effective resolution is to separate the two metallic surfaces.
Several of the excessive-alloy CPM steels offer put on properties midway between standard tool steels, and carbide. In working with abrasive media, the CPM steels offer very excessive resistance to put on. However, in conditions producing extreme metal-to-steel wear , the best resolution is to separate the two metallic surfaces.
The offered seamless pipes are manufactured utilizing the superior high quality steel and sophisticated know-how as per the predefined business standards. Our supplied seamless pipes are extremely appreciated by our priceless clients for their sturdy building, corrosion resistance, fantastic finish, high mechanical power, temperature resistance and lots of extra.
Compare this to the bigger carbides , and the attribute alloy segregation or banding which results from conventional steelmaking strategies. The characteristic feature of P/M software steels is their close to complete freedom from carbide segregation. First, areas of excessive concentrations of onerous carbide particles could also be troublesome to grind, leading to fabrication difficulties. Second, when these segregated areas are physically elongated during rolling or forging, they end in a directionally oriented microstructure, and reduce the fabric toughness along the transverse direction. Vanadium ranges over about 3% are excessive sufficient to cause explicit grinding and toughness difficulties.
1.0570 und 1.0577,1.0570 rohr,1.0570 jis,1.0570+c,1.0570 din,1.0570 c45,1.0570 china,steel 1.0570 chemical composition,1.0570 material chemical composition,1.0570 density,din 1.0570 equivalent astm,en 1.0570 equivalent,en 1.0570 properties,s355j2g3 (1.0570) en 10025,1.0570 equivalent jis,din 1.0570 equivalent,din 1.0570 steel,1.0570 material composition,din 1.0570 chemical composition,1.0570+ar,1.0570 equivalent astm material,1.0570 aisi,1.0570 acciaio,1.0570 en 10025,1.0570 material equivalent in india,acero 1.0570 equivalencia,1.0570 bar,1.0570 bestellen,blacha 1.0570,1.0570 bruchdehnung,1.0570 bezeichnung,baustahl 1.0570,e-modul 1.0570,1.0570 fräsen,1.0570 in astm,was ist 1.0570,1.0570 härte hrc,1.0570 h9,1.0570 hrc,1.0570 hot rolled and normalized,jakost 1.0570,1.0570 kerbschlag,1.0570 material specification,1.0570 material density,1.0570 lieferant,1.0570 korrosion,1.0570 kaufen,1.0570 kosten,1.0570 härte,1.0570 heat treatment,1.0570 equivalent grade,steel grade 1.0570 equivalent,1.0570 festigkeit,präzi flachstahl 1.0570,1.0570 geschmiedet,1.0570 gewicht,gatunek 1.0570,1.0570 hardness,1.0570 glühen,1.0570 geschliffen,1.0570 gefüge,1.0570 material spec,
DIN17100 ST52-3 ST52-3N Steel plate Chemical composition of heat analysis:
DIN |
ASTM |
EN |
JIS |
Chemical Composition |
C.E. |
||||||||||
C |
Si |
Mn |
Cr |
Mo |
Ni |
V |
W |
S |
P |
CU |
|||||
17100 St52-3N |
A572-50 |
10025-2:2004 S355J2+N |
G3106 SM490YB |
max 0.22 |
max 0.55 |
max 1.60 |
– |
– |
– |
– |
– |
max 0.035 |
max 0.035 |
– |
max 0.047 |
St52-3 steel data sheet – 2, Chemical composition (product analysis) according to DIN 17100 and DIN EN 10025: 1993.
Chemical Composition (product analysis), %, ≤ |
|||||||||||
Country (Region) |
Standard |
Steel Grade (Steel number) |
C |
Si |
Mn |
P |
S |
N |
Cu |
Thickness (d) (mm) |
Method of deoxidation |
Germany |
DIN 17100: 1980 |
St52-3 (1.0570) |
0.22 |
0.60 |
1.70 |
0.065 |
0.065 |
– |
≤ 30 |
Fully Killded |
|
0.24 |
30 <d ≤100 |
||||||||||
European Union |
EN 10025: 1993 |
S355J2G3 (1.0570) |
0.22 |
0.60 |
1.70 |
0.045 |
0.045 |
– |
≤ 30 |
||
0.24 |
30 <d ≤100 |
||||||||||
EN 10025-2: 2004 |
S355J2 (1.0577) |
0.22 |
0.60 |
1.70 |
0.035 |
0.035 |
– |
0.60 |
≤ 30 |
||
0.24 |
30 <d ≤100 |
St52-3 Steel Properties
Physical Properties
- Material St 52-3 Density: 7.85 g/cm3
- Melting point: 1420-1460 °C (2590-2660 °F)
DIN17100 ST52-3 ST52-3N Steel plate mechanical properties steel plate
Thickness (mm) |
Yield Strength Reh min (N / mm2) |
Tensile Strength Rm min (N / mm2) |
Elongation A5 min (%) |
Impact Values Charpy-V-Notch Longitudinal Average from 3 Speimens Thk. >10<150mm. |
3<thk<100 |
315-355 |
490-630 |
max 22 |
27 Joules at -20 C |
St52-3 steel data sheet – 1, Chemical composition (ladle analysis) according to DIN 17100 and DIN EN 10025: 1993.
Chemical Composition (ladle analysis), %, ≤ |
|||||||||||
Country (Region) |
Standard |
Steel Grade (Steel number) |
C |
Si |
Mn |
P |
S |
N |
Cu |
Thickness (d) (mm) |
Method of deoxidation |
Germany |
DIN 17100: 1980 |
St52-3 (1.0570) |
0.20 |
0.55 |
1.60 |
0.040 |
0.040 |
– |
≤ 30 |
Fully Killded |
|
0.22 |
30 <d ≤100 |
||||||||||
European Union |
EN 10025: 1993 |
S355J2G3 (1.0570) |
0.20 |
0.55 |
1.60 |
0.035 |
0.035 |
– |
≤ 30 |
||
0.22 |
30 <d ≤100 |
||||||||||
EN 10025-2: 2004 |
S355J2 (1.0577) |
0.20 |
0.55 |
1.60 |
0.025 |
0.025 |
– |
0.55 |
≤ 30 |
||
0.22 |
30 <d ≤100 |
DIN17100 ST52-3 EQUIVALENT STEEL GRADES
EN 10025 – 2 |
EN 10025+A1 |
?SN |
DIN 17100 |
||
EN10027-1 |
EN10027-2 |
EN10027-1 Grade |
EN10027-2 Grade |
|
|
S235JR2 |
1.0038 |
S235JRG2 |
1.0038 |
11375 |
RSt 37-2 |
S235J0 |
1.0114 |
S235J0 |
1.0114 |
11378 |
St 37-3U |
|
– |
S235J2GR3 |
1.0116 |
11378 |
St 37-3N |
S235J2 |
1.0117 |
S235J2G4 |
1.0117 |
– |
– |
S275JR |
1.0044 |
S275JR |
1.0044 |
11443 |
St 44-2 |
S275J0 |
1.0143 |
S275J0 |
1.0143 |
11445 |
St 44-3U |
|
– |
S275J2GR3 |
1.0144 |
11448 |
St 44-3N |
S275J2 |
1.0145 |
S275J2G4 |
1.0145 |
– |
– |
S355JR |
1.0045 |
S355JR |
1.0045 |
11523 |
St 52-3 |
S355J0 |
1.0553 |
S355J0 |
1.0553 |
11523 |
St 52-3U |
|
– |
S355J2G3 |
1.057 |
11503 |
St 52-3N |
S355J2 |
1.0577 |
S355J2G4 |
1.0577 |
– |
– |
Material St 52-3 Datasheet – 3
Yield strength (≥ N/mm2); Thickness (d) mm |
||||||
Steel (Steel number) |
d≤16 |
16< d ≤40 |
40< d ≤63 |
63< d ≤80 |
80< d ≤100 |
>100 |
St52-3 |
355 |
345 |
335 |
325 |
315 |
by agreement |
Tensile Strength
Material St 52-3 Datasheet – 4
Tensile strength (≥ N/mm2); Thickness (d) mm |
|||
Steel (Steel number) |
d<3 |
3 ≤ d ≤ 100 |
>100 |
St 52-3 |
515-680 |
490-630 |
by agreement |
Note: 1MPa = 1N/mm2
Elongation
Material St 52-3 Datasheet – 5
Elongation (≥, %); Thickness (d), mm |
||||||||
Steel (Steel number) |
0.5 ≤d <1 |
1≤ d <1,5 |
1,5≤ d <2 |
2≤ d <2,5 |
2,5≤ d <3 |
|||
St52-3U |
14 |
15 |
16 |
17 |
18 |
|||
St52-3N |
12 |
13 |
14 |
15 |
16 |
|||
Elongation (≥, %); Thickness (d), mm |
||||||||
Steel (Steel number) |
3 ≤d ≤40 |
40< d ≤63 |
63 < d ≤100 |
>100 |
||||
St52-3 |
22 |
21 |
20 |
by agreement |
||||
St52-3N |
20 |
19 |
18 |
Thus, the treatment course of can restrict the service hardness of low or medium alloy steels. However, the higher alloy content steels similar to M2, M4 as well as CPM 3V, 9V, 10V, 15V retain their maximum hardness after such exposures.
In these cases, the conventional recommendation is to use CPM 10V or 15V instead of carbide in most functions, or Rex T15, Rex seventy six or Rex 121 when high hardness is required. These grades present the closest wear and hardness properties to carbide, while providing the toughness properties of tool steels. Hardness and toughness may be considered “step” or “threshold” features; that’s, so long DIN 17100 ST 52-3 as the property is high sufficient to stop damage , there is no additional advantage to rising the property even greater. However, wear resistance could also be considered a “continuous” perform; that is, continual will increase within the put on resistance of the metal will lead to will increase in the life of the software.
What is the difference between Grade A and Grade B pipe?
Grade in A, B and C. ASTM A106 Grade A: Maximum Carbon element 0.25%, Mn 0.27-0.93%. Minimum tensile strength 48000 Psi or 330 Mpa, yield strength 30000 Psi or 205 Mpa. A106 Grade B: Maximum C below 0.30%, Mn 0.29-1.06%.
However, they often do not provide the extent of efficiency wanted for prime quantity manufacturing. Specifically, where long runs and infrequent regrinding are desired, different higher alloy device steels or carbide could be used to upgrade from these tool steels. Traditionally, other properties, corresponding to impression resistance, could also be sacrificed to be able to achieve the upper put on properties.
HENAN GANG IRON AND STEEL CO.LTD is a professional super steel plates/sheets manufacture and supplier. We can supply different product type of ST37-2,Ust 37-2 , Rst37-2, ST44-2, ST44-3, ST52-3, ST50-2, ST60-2, ST70-2 .If you have any need of DIN 17100 super heavy steel plate please do not hesitate to contact us .Check St 52.3 Steel Equivalent And Material, Find St52 3 Steel Round Bar Price